A Fast Object Detection Method with Rotation Invariant Features
نویسندگان
چکیده
Based on the combined shape feature and texture feature, a fast object detection method with rotation invariant features is proposed in this paper. A quick template matching scheme based online learning designed for online applications is also introduced in this paper. The experimental results have shown that the proposed approach has the features of lower computation complexity and higher detection rate, while keeping almost the same performance compared to the HOG-based method, and can be more suitable for run time applications. Keywords—gradient feature, online learning, rotation invariance, template feature
منابع مشابه
Contours Extraction Using Line Detection and Zernike Moment
Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...
متن کاملInvariant object detection based on evidence accumulation and Gabor features
In this paper, we propose an invariant object detection method based on evidence accumulation and the Gabor transforms feature. In contrast to conventional evidence accumulation methods, the proposed method uses Gabor transform features to detect object parts. Experimental results prove that our algorithm robustly detects arbitrary shaped objects in cluttered environments with invariance to tra...
متن کاملRSTC-Invariant Object Representation with 2D Modified Mellin-Fourier Transform
In this paper is presented a method for invariant 2D object representation based on the MellinFourier Transform (MFT), modified for the application. The so obtained image representation is invariant against 2D rotation, scaling, and translation change (RST). The representation is additionally made invariant to significant contrast and illumination changes. The method is aimed at content-based o...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کامل